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Extracellular adenosine (eAdo) has been identified as a potent
inhibitor of antitumor immune responses and enhancer of tumor
survival. Two ectonucleotidases, CD39 and CD73, are involved in
the generation of eAdo from adenosine triphosphate (ATP).
Numerous studies have demonstrated their active role in promot-
ing solid tumor outgrowth and spreading but also in inhibiting
the antitumor immune response. Indeed, accumulation of eAdo
was detected in solid tumors, and binding of eAdo to its recep-
tors (A2AR) expressed at the surface of immune cells provides an
immunosuppressive signal on effector T, natural killer (NK), and
NKT cells, macrophages/dendritic cells, and neutrophils.1 In addi-
tion, signaling through A2AR upregulates a number of anti-
inflammatory molecules and the activity of regulatory T cells,
leading to a long-lasting immunosuppressive environment.2,3

Accordingly, the use of A2AR antagonists has demonstrated
promising efficacy in the treatment of cancer.4 Anti-CD39 or anti-
CD73 antibodies were also developed that efficiently block the
hydrolysis of ATP into immune-suppressive eAdo and unleash
antitumor immunity by stimulating dendritic cells and macro-
phages and restoring T-cell activation.5,6

S�ezary syndrome (SS) is an aggressive form of cutaneous T-cell
lymphoma characterized by the presence of a malignant CD41

T-cell clone in skin and blood and a global immunodeficiency.7

We previously demonstrated an abnormal expression of CD39
by the circulating tumor T cells in patients with SS,8 questioning
the functional consequences of this overexpression in terms of
antitumor immune response suppression and tumor cell growth.
To gain insights into the potential role of the CD39/CD73/aden-
osine pathway in tumor escape, we further evaluated both
CD39 and CD73 expression by circulating tumor CD41 T-cell
clone and nonmalignant T/B/NK lymphocytes in patients with
SS. Multicolor flow cytometry analysis was performed on the
blood of healthy donors (HD, n 5 49) and patients with SS
whose malignant CD41 T-cell clone can be distinguished from
the nonmalignant CD41 T cells using an available anti-TCRVb
monoclonal antibody (mAb; n 5 37). With this larger cohort, we
confirmed the previously described overexpression of CD39 by
S�ezary patients' malignant CD41 T-cell clone when compared
with HD CD41 T-cell population (Figure 1A; means 6 standard
deviation in supplemental Table 1 on the Blood Web site).
Remarkably, addition of CD73 marker allowed us to distinguish
3 groups of patients according to CD39 and/or CD73 positivity

of their tumor clone (Figure 1B): 51.3% (n 5 19/37)
and 27% (n 5 10/37) of the patients had a tumor clone with
a CD391CD732 or CD392CD731 phenotype respectively,
whereas 8.1% (n 5 3/37) were characterized by a mainly
CD391CD731 malignant clone (representative labelings shown in
supplemental Figure 1A). No overexpression of either marker was
detected on the malignant cells of 5/37 tested patients (13.5%).
Significant overexpression of CD39 or CD73 by nonmalignant
CD41 T cells was also observed in SS compared with HD (Figure
1A-B; supplemental Table 1). However, it could be noted that, in
a given patient, the nonmalignant CD41 T cells and the malig-
nant clone showed distinct CD39/CD73 expression profiles (Fig-
ure 1B), reinforcing the previously reported notion of genetic and
phenotypic disease heterogeneity.9-12 Further comparison of the
nonmalignant lymphocyte populations of SS patients vs HD
revealed: (1) an up-modulation of CD39 and a down-modulation
of CD73 on CD81 T cells; (2) higher expression of CD39 or CD73
by NK cells; and (3) a similar CD39/CD73 phenotype on B cells
(Figure 1C-E; supplemental Table 1). Altogether, these data high-
light a strong bias in the expression profile of CD39 and/or CD73,
not only on the tumor clone but also on the nonmalignant CD41

and CD81 T cells and NK cells, in the context of SS.

Despite high expression level of CD39 by the malignant cells of
patients with SS, no significant increased release of soluble CD39
was detected in the plasma samples of patients with SS when
compared with HD (supplemental Figure 1B). However higher
levels of circulating adenosine 59-monophosphate were observed
(Figure 2A), as well as an increased ability of CD41 T cells of
patients with SS to promote ATP hydrolysis (Figure 2B). Because
eAdo overproduction might occur from CD39/CD73 overexpres-
sion, we tested its possible impact on the T-cell functions of
patients with SS. Proliferations assays were conducted on periph-
eral blood mononuclear cells (PBMC) activated with CD3/CD28
beads. As reported previously,13 the CD3/CD28-induced prolifer-
ation of HD CD41 and CD81 T cells was strongly inhibited in the
presence of ATP (Figure 2C; n 5 6). This ATP-induced inhibition
was completely abolished when istradefylline, an antagonist
inhibitor of the eAdo A2AR, or an anti-CD73 mAb previously
identified as blocking CD73 nucleotidase activity,14 was added.
In contrast A438079, an antagonist of the ATP receptors P2X7R,
remained ineffective in preventing the effects of ATP (Figure 2C).
Similar experiments performed on the PBMC of patients with SS
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Figure 1. Abnormal expression of CD39 and CD73 on malignant and nonmalignant circulating lymphocytes of patients with SS. Expression of CD39 and CD73
was assessed on total blood of patients with SS (n 5 37) or healthy donors (HD; n 5 49) by flow cytometry. After acquisition on a flow cytometer, the percentage of CD391

and/or CD731 cells was estimated on (A) HD (CD31CD41) or SS total (CD31CD41), malignant (CD31TCRVb1CD41) or nonmalignant (CD31TCRVb-CD41) CD41 T cells, (D)
NK cells (CD32CD561) and (E) B cells (CD32CD191). (B) Histograms showing CD39 and CD73 single (SP) or double (DP) expression by normal (HD) or malignant/nonmalignant
(SS) CD41 T cells of each donor tested in each group. (A,C-E) Statistical analysis was performed using a Mann-Whitney t test. **P, .01, ***P, .001, ****P, .0001.
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Figure 2. Impact of CD39/CD73 overexpression on malignant and nonmalignant T- and NK-cell functions. (A) Quantification of adenosine 59-monophosphate in
the plasma of HD and patients with SS (n 5 10 per group). (B) Quantification of cell-associated CD39/CD73 enzymatic activity using purified CD41 T cells from HD or
patients with SS (n 5 4 per group). (C) T-cell proliferation assay. Carboxyfluorescein diacetate succinimidyl ester- or CellTrace Violet-labeled PBMC from HD or patients
with SS (n 5 6 per group) were either left untreated or activated for 4 days with CD3/CD28 beads in the presence of ATP alone or combined with istradefylline (50 mM),
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(n 5 6) revealed an identical CD81 T-cell response as in HD,
namely an ATP-mediated inhibition of proliferation that was abol-
ished by addition of istradefylline or anti-CD73 mAb, but not
A438079 (Figure 2C). Regarding CD41 T cells, although malig-
nant cells proliferated less than nonmalignant cells upon CD3/
CD28 activation, both populations' proliferation was affected by
ATP. However, abolition of the ATP-mediated inhibition of prolif-
eration by istradefylline or the anti-CD73 mAb appeared fully
effective on nonmalignant CD41 T cells, but only partially on the
malignant clone, which proliferation remained altered (Figure 2C).
There again, A438079 did not prevent the inhibitory effects of
ATP regardless of the CD41 T-cell subtype. It therefore seemed
that the ATP immunosuppressive function relied on the same
mechanism in nonmalignant CD41 and CD81 T cells of patients
with SS as in HD normal T cells, involving the conversion of ATP
into eAdo by CD39/CD73 and eAdo binding to A2AR on T cells.
In contrast, our data suggest that another mechanism prevailed
in malignant CD41 T cells as inhibition of eAdo production or
eAdo/A2AR interaction was not sufficient by itself to fully pre-
vent their ATP-induced inhibition of proliferation. As mentioned
previously, malignant cells developed lower proliferation levels
than their nonmalignant counterparts in response to CD3/CD28
activation (Figure 2A), a phenomenon previously attributed to
antibody-induced cell death resistance.15 One could therefore
hypothesize that part of the malignant cells are biased toward
apoptosis resistance, remaining unresponsive to proliferative
signals.

New therapeutic approaches in cutaneous T-cell lymphoma
include depleting antibodies such as the recently developed anti-
CCR4 (mogamulizumab)16 and anti-KIR3DL2 (IPH4102/lacuta-
mab)17 antibodies. It has been demonstrated that NK cells
actively participated in malignant cell depletion by exerting
antibody-dependent cell cytotoxicity (ADCC).18,19 Inhibition of
ADCC would therefore be detrimental for the obtention of maxi-
mal antitumor responses. We thus explored the impact of ATP/
eAdo generation on NK cell ADCC function. Assays were con-
ducted using interleukin-15-treated PBMC as source of activated
NK cells, the CD201 B-cell line Raji as target cells, and the anti-
CD20 antibody rituximab as therapeutic antibody. Efficient killing
of Raji cells was promoted by HD PBMC, which was not signifi-
cantly affected by addition of ATP (Figure 2D, left). Consequently,
addition of istradefylline or A438 did not interfere in the process
leading to target cell depletion. Identical results were obtained
with the PBMC of patients with SS (Figure 2D, right).

We here established that CD39 and/or CD73 cell surface
expression is dysregulated on tumor clone of patients with SS
but also on the nonmalignant T and NK cell populations, result-
ing in increased ATP hydrolysis. We further demonstrated that,
in an ATP-enriched cellular environment, inhibition of the CD39/
CD73/adenosine pathway could completely restore nonmalig-
nant CD41 and CD81 T-cell proliferation but not malignant
T-cell proliferation. Finally, the ADCC activity of NK cells did not
seem affected by high ATP levels. In light of these data, the com-
bined use of ADCC-driving therapeutic antibodies and antagonist

inhibitors of CD39/CD73/adenosine pathway could represent an
interesting option for improving antibody-dependent antitumor
immune responses in the context of SS.
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The classic Ph-negative myeloproliferative neoplasms (MPNs) are
a group of clonal hematopoietic disorders, including polycythemia
vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF),
caused by a dysregulated JAK/STAT signal transduction because
of acquired somatic mutations of JAK2, CALR, orMPL genes.

Chronic inflammation may predispose to MPN development;
indeed, higher risk of MPN has been reported for patients with a
history of autoimmune diseases, including immune thrombocyto-
penia, Crohn disease, giant cell arteritis, and Reiter syndrome.1

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection displays extreme interindividual clinical variability, rang-
ing from asymptomatic infection to life-threatening coronavirus
disease (COVID-19).2,3 Age is a major risk factor for severe dis-
ease, with risk of death doubling every 5 years from childhood
onward. The global infection fatality rate is �1% but 0.001% at
age 5 years and 10% at age 85 years (a 10.000-fold increase).
Male sex and medical comorbidities have minor impact.4-6 It

was shown that 1% to 5% of patients with life-threatening
COVID-19 pneumonia have monogenic inborn errors of TLR3-
or TLR7-dependent type I interferon (IFN-I) immunity.7,8 At least
15% of patients with life-threatening COVID-19 pneumonia have
neutralizing autoantibodies (AAbs) against IFN-I, which precede
SARS-CoV-2 infection.9,10

In patients with MPN, COVID-19 is associated with a mortality of
33%.11 Patients with MF had the highest mortality (48%)12

whereas patients with ET had the greatest risk of venous throm-
boembolism (16.7%).13

In this study, we searched for AAbs against IFN-I in a cohort of
patients with MPN to evaluate their prevalence in the MPN pop-
ulation and investigate clinical correlations, including COVID-19
severity.

This study was approved by the Ethics Committee of Fonda-
zione IRCCS Policlinico San Matteo, Pavia, Italy. The procedures
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